PROJECT MANAGEMENT lan Sommerville, 8° edição — Capítulo 5 Aula de Luiz Eduardo Guarino de Vasconcelos

Objetivos

- Introduzir gerenciamento de projeto de software e descrever suas características distintivas
- Discutir o planejamento de projeto e o processo de planejamento
- Mostrar como representações gráficas de cronograma são usados pelo gerenciamento do projeto
- Discutir a noção de riscos e o processo de gerenciamento de risco

Tópicos abordados

- □ Atividades de gerenciamento
- Planejamento do projeto
- □ Cronograma do projeto
- □ Gerenciamento de riscos

Gerenciamento do projeto de software

- Preocupa-se com atividades envolvidas em garantir que o software será entregue no tempo e no prazo determinados, e de acordo com os requisitos das organizações desenvolvendo e adquirindo o software
- O gerenciamento do projeto é necessário, pois o desenvolvimento de software é sempre assunto de restrições de orçamento e cronograma que são estabelecidos pela organização desenvolvendo o software

Distinções do gerenciamento de Software

- O produto é intangível
- O produto é unicamente flexível
- A engenharia de software não é reconhecida como uma disciplina da engenharia com o estado íntegro como a mecânica, a engenharia elétrica, etc.
- O processo de desenvolvimento de um software não é padronizado
- Muitos projetos de software são projetos "one-off"

Atividades de gerenciamento

- Escrita da proposta
- □ Planejamento e cronograma do projeto
- Custos do projeto
- Monitoramento do projeto e revisões
- □ Seleção e avaliação de pessoal
- Relatório escrito e apresentações

Gerenciamento de semelhanças

- Essas atividades não são peculiares ao gerenciamento de software
- Muitas técnicas de gerenciamento de projeto de engenharia são igualmente aplicáveis para o gerenciamento de projeto de software
- Sistemas de engenharia tecnicamente complexos tendem a sofrer dos mesmos problemas que um sistema de software.

Seleção de pessoal para o projeto

- Pode não ser possível apontar a pessoa ideal para trabalhar em um projeto
 - O orçamento do projeto pode não permitir o uso de uma equipe com grandes pagamentos
 - Equipe com a experiência apropriada pode não estar disponível
 - Uma organização pode querer desenvolver as habilidades dos empregados em um projeto de software
- Os gerentes têm que trabalhar dentro dessas limitações especialmente quando (como é corriqueiramente o caso) há uma falta de pessoas habilitadas em tecnologia da informação (TI) internacionalmente

Planejamento do projeto

- Provavelmente a atividade de gerenciamento do projeto de maior consumo de tempo
- Atividade contínua do conceito inicial até a entrega do sistema. Os planos devem ser regularmente revisados à medida que novas informações estejam disponíveis
- Vários tipos diferentes de plano podem ser desenvolvidos para suportar o projeto principal de planejamento que se preocupa com cronograma e orçamento

Tipos de planos de projeto

Plano	Descrição		
Plano de Qualidade	Descreve os procedimentos de qualidade e padrões que serão utilizados no projeto.		
Plano de validação	Descreve a abordagem, os recursos e o cronograma utilizados para a validação do sistema.		
Plano de configuração do gerenciamento	Descreve os procedimentos de configuração do gerenciamento e estruturas a serem utilizados.		
Plano de manutenção	Prevê os requisitos de manutenção do sistema, os custos da manutenção e o esforço necessário.		
Plano de desenvolvimento do pessoal	Descreve como as habilidades e experiências dos membros do time do projeto serão desenvolvidos		

Planejamento do processo do projeto

Estabelecer as restrições do projeto

Fazer uma avaliação inicial dos parâmetros do projeto

Definir os marcos e as entregas

enquanto o projeto não for completado ou cancelado faça:

Desenhe o cronograma do projeto

Inicie as atividades de acordo com o cronograma

Espere (um pouco)

Revise o progresso do projeto

Revise estimativas dos parâmetros do projeto

Atualize o cronograma do projeto

Renegocie as restrições do projeto e as entregas

se (problemas surgirem) então

Inicie a revisão técnica e possível revisão

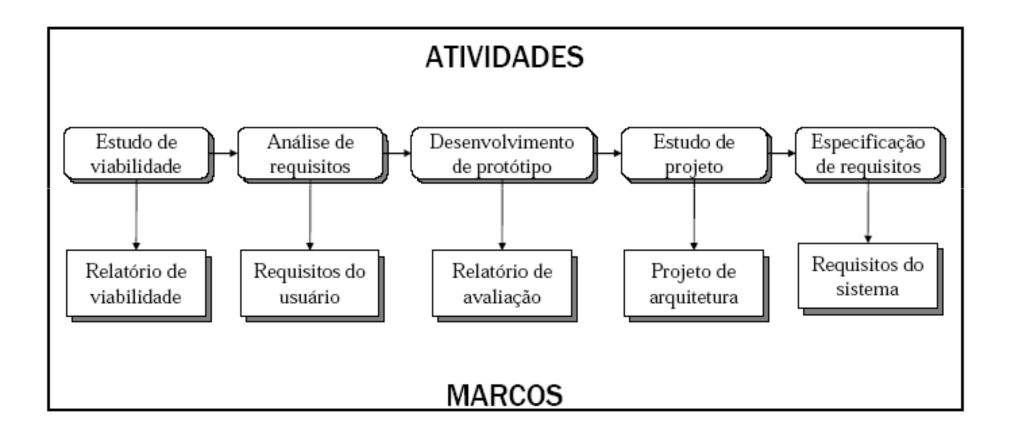
fim do se

fim do enquanto

O plano de projeto

- □ O plano de projeto deve:
 - Recursos disponíveis para o projeto
 - A estrutura analítica do projeto
 - O cronograma de trabalho

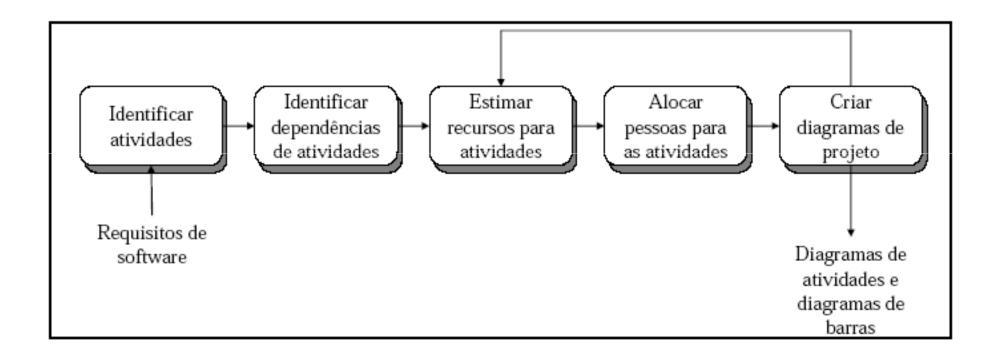
Estrutura do plano de projeto


- Introdução: objetivos e restrições que afetam o gerenciamento de projeto (orçamento, prazo, etc)
- Organização do projeto: organização da equipe e seus papéis
- Análise de risco
- Requisitos de recursos para hardware e software: o que é necessário, podendo ter estimativas
- "Work Breakdown" Estrutura analítica: identifica marcos e produtos a serem entregues
- Cronograma do projeto: dependências, prazos e alocação de pessoal
- Monitorando e reportando mecanismos: relatórios

CRONOGRAMA

Organização de atividades

- As atividades em um projeto devem ser organizadas para produzir saídas tangíveis para o gerenciamento para julgar o processo
- Milestones (marcos) são os pontos finais de uma atividade do processo
- Deliverables (Entregas) s\u00e4o resultados do projeto entregues ao clientes
- O processo cascata permite a definição direta de milestones de progresso


Milestones no processo Engenharia de Requisitos

Cronograma do projeto

- Dividir o projeto em tarefas e estimar tempo, custo e recursos necessários para completar cada tarefa
- Organizar as tarefas concomitantemente para um uso otimizado da força de trabalho
- Minimizar as dependências de tarefas pra evitar atrasos causados por uma tarefa esperando pela finalização de outra
- □ Depende da intuição e experiência do gerente do projeto
- Sugestão: estime atividades de uma semana para facilidade de acompanhamento. Caso a atividade seja grande, mais de 10 semanas, divida-a em sub-atividades.

O processo de cronograma do projeto

Problemas no Cronograma

- Estimar a dificuldade de problemas e, a partir de então, o custo de desenvolver uma solução é difícil
- Produtividade não é proporcional ao número de pessoas trabalhando em uma tarefa
- Adicionar pessoas tardiamente a um projeto faz com que ele se atrase mais devido aos atrasos na comunicação
- O inesperado sempre acontece. Sempre permita contingência no planejamento

Atraso na entrega: Causas

- Data de entrega irrealística
- Mudanças de requisitos
- □ Subestimativa de esforço e/ou recursos
- Riscos previsíveis e/ou imprevisível que não considerados
- Dificuldades técnicas
- Dificuldades Humanas
- □ Falta de comunicação entre a equipe de projeto
- Falha na gerencia para perceber o atraso e falta de ação

Atraso na entrega: Causas

- Imprevistos podem acontecer
 - Funcionário doente
 - Funcionário pede demissão
 - Hardware pode apresentar defeito
 - Hardware e software de suporte podem demorar a serem entregues
 - Software novo e tecnicamente avançado pode demorar mais tempo que o previsto para ser desenvolvido
 - Dependência de fatores externos

Dúvida

- O que devemos fazer quando a gerência exige que cumpramos um data de entrega impraticável?
- Recomendações nessa situação
 - Use dados históricos de projetos anteriores
 - Esforço e a duração
 - Use um modelo incremental e entregue apenas a funcionalidade crítica no prazo e adie a funcionalidade restante
 - Reuna com o cliente e explique por que a data é impraticável
 - Frise que são baseadas em problemas anteriores

Cronogramação de Projetos

- Objetivo do gerente de projeto
- Definir todas as tarefas do projeto
- Construir uma rede que mostre sua interdependência
- Identificar as tarefas que são críticas nessa rede
 - Acompanhar seu progresso para certificar que atrasos sejam reconhecidos
 - Monitorar o progresso

Cronogramação de Projetos

- "É uma atividade que distribui o esforço estimado pela duração planejada do projeto, partilhando esse esforço por tarefas específicas de ES.
- Cronograma
 - Macroscópico
 - Detalhado
- Uma data final foi estabelecida
 - Distribuir o esforço dentro do espaço de
 - tempo prescrito

Princípios Básicos

- Compartimentalização
 - Atividades e tarefas gerenciais
 - Tanto o produto como processo são decomposto
- Interdependência
 - Tarefas —seqüências
 - Tarefas paralela
- Atribuição de tempo
 - Cada tarefa deve ser atribuída uma unidade de trabalho (ex.: pessoas-dia esforço)
 - Cada tarefa deve ter uma data de início e fim

Princípios Básicos

- Validação de esforço
 - Garantir que não mais do que o número alocado de pessoas seja cronogramado em um determinado momento
- Responsabilidade definidas
 - Cada tarefa deve ser atribuída a um membro da equipe
- Resultados definidos
 - Cada tarefa deve ter um resultado definido
 - □ Produto de trabalho
- Marcos de referência definidos
 - Atividades ou artefatos prontos

Relacionamento entre Pessoal e Esforço

- Projeto pequeno
 - Uma pessoa pode fazer tudo
- □ Projeto grande isso não é possível!
- Mito do gerente
 - Atraso no projeto
 - Coloco mais pessoas na equipe
 - Precisam aprender sobre o sistema
 - Quem irá treiná-los são os que estavam fazendo o trabalho
 - Enquanto ensinam não pode fazer o trabalho e o projeto atrasa ainda mais

Distribuição de Esforço

- □ Regra 40-20-40
 - 40% análise e projeto finais
 - 20% codificação
 - □ 40% Testes
- □ Deve ser usada apenas como diretriz
 - Varia de acordo com as características de cada projeto

Cronograma do Projeto

- Recursos (além dos prazos de execução):
 - Esforço humano requerido
 - Espaço em disco de armazenamento
 - Tempo de uso de processamento especializado
 - Salas para reuniões
 - Computadores e programas utilizados
 - Orçamento de diárias para viagens
 - Pessoas disponíveis para discussões
- Sugestão: iniciar com uma estimativa de "sem problemas" e acrescentar:
 - 30% para solução de possíveis problemas
 - 20% para aspectos não previstos

Tipos de Projeto de Software

- Desenvolvimento conceitual
- Desenvolvimento de novas aplicações
- Aperfeiçoamento de aplicações
- Manutenção de aplicações
- Projetos de reengenharia

Fatores que influenciam o conjunto de tarefas escolhido

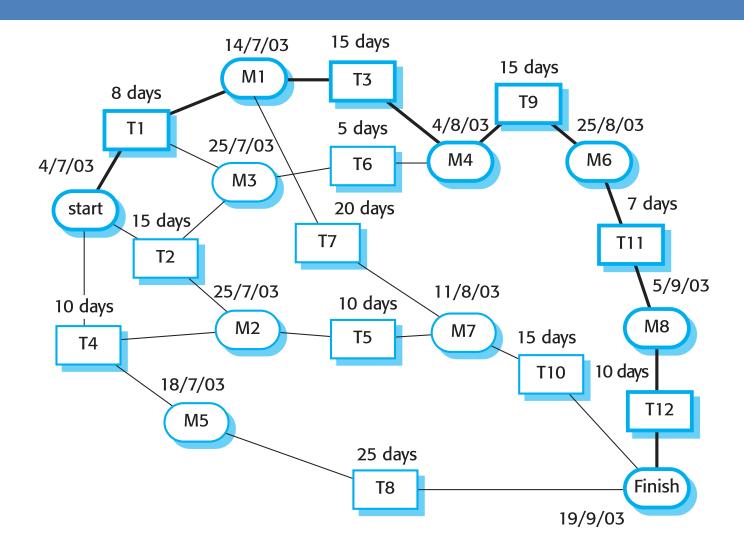
- 🗆 Tamanho do projeto e Urgência
- Número de usuários em potencial
- Criticidade da missão
- Longevidade da aplicação
- Estabilidade dos requisitos
- □ Facilidade de comunicação cliente/desenvolvedor
- Maturidade da tecnologia aplicável
- Restrições de desempenho
- Características embutidas e não-embutidas
- Equipe de projeto
- Fatores de reengenharia

Cronogramação

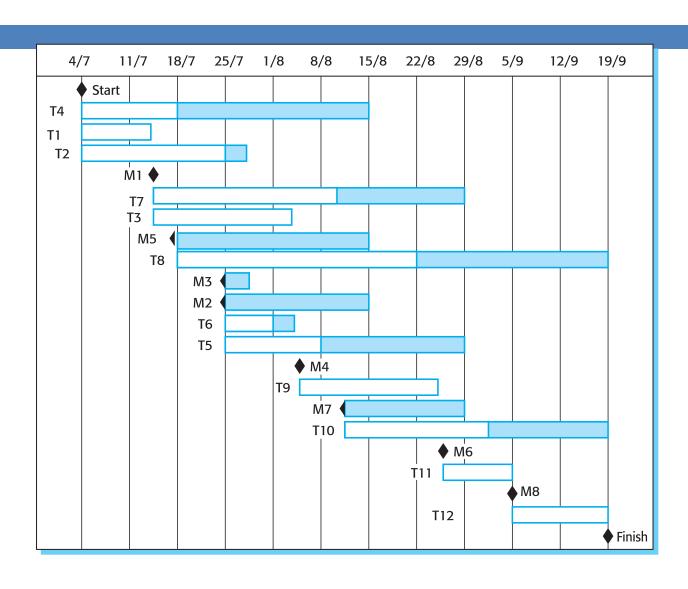
- Métodos de cronogramação de software
 - Técnica de avaliação e revisão de programação (PERT)
 - Método do caminho crítico (CPM)
- Usam
 - Caminho crítico
 - Tempo mais prováveis
 - Limites de tempo (janelas)
- Atividades
 - Estimativa de esforço
 - Uma decomposição da função do produto
 - Seleção de modelo de processo e conjunto de tarefas adequado
 - Decomposição de tarefas

Gráfico de Tempo

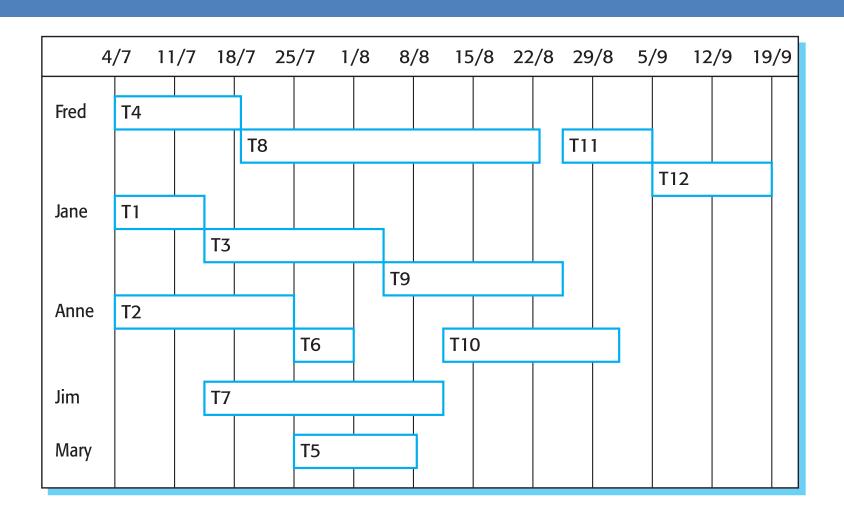
Descrição de tarefas						
Cód.	Descrição	Marco de Referência		Produto		
T1	Realização da entrevista		Questionário respondido			
T2	Análise dos Use-cases para identificação das funções associadas a cada subsistema		Descrição dos Subsistemas			
Т3	Especificação abstrata dos subsistemas				Diagrama de Classes	
T4	Modelo Comportamental do subsistema		Diagramas de Seqüência			
T5	Projeto de Banco de <u>Dados</u> — Modelo Lógico		7		Tabelas de Representação	
Τ6	Projeto de Banco de Dados Modelo Físico				Tabelas de Representação	
Т7	Projeto de Banco de Dados – Mapeamento de Classes				Tabelas de Representação	
T8	Projeto de Interfaces Utilização do <u>Dreamweaver</u>				Projeto de Software	
Т9	Codificação do subsistema Acesso a WEB		Listagem do Código			
T10	Teste de Unidade		Avaliação dos Testes de Unidade			
T11	Teste de validação			0	Guia de Manutenção Software – programas e documentação	


Diagrama de barra e rede de atividades

- Notações gráficas usadas pra ilustrar o agendamento do projeto
- Mostrar a separação do projeto em tarefas. As tarefas não devem ser muito pequenas. Devem levar uma ou duas semanas.
- As redes de atividades mostram as dependências de tarefas e o caminho crítico
- Diagramas de barra mostram o cronograma confrontado com o tempo do calendário


Duração das tarefas e dependências

Tarefa	Duração (dias)	Dependências
T1	8	
T2	15	
Т3	15	T1 (M1)
T4	10	
T5	10	T2, T4 (M2)
T6	5	T1, T2 (M3)
T7	20	T1 (M1)
T8	25	T4 (M5)
Т9	15	T3, T6 (M4)
T10	15	T5, T7 (M7)
T11	7	T9 (M6)
T12	10	T11 (M8)


Rede de atividades

Linha de tempo da atividade

Distribuição de pessoal

Acompanhamento do cronograma

- Roteiro para o gerente
 - Tarefas e marcos de referência
- Conduzir reuniões periódicas
 - Relatos de problemas e progresso
- Avaliar o resultado de todas as revisões
- Determinar se os marcos foram entregues na data prevista
- Comparar a data real com a data de início planejada
- Análise do valor agregado
 - Tarefas planejadas/ Tarefas cumpridas
 - Quociente ideal igual a 1

Pesquisa

- □ Trabalho em grupo 8 grupos
- Estudar a ferramenta selecionada
 - Características, Funcionalidades, Pontos fortes e pontos fracos
 - O que é ? Para que serve (Qual o propóstito)? Onde é utilizado (Contexto de uso)? Use o 5W2H.
- Elaborar um tutorial de instalação e um tutorial de uso
 - DotProject
 - GanttProject
 - TeamWork
 - Hipergate
- MS PROJECT
- Entregar no e-mail
- Assunto: FES_CAP5
- Arquivo: Nome_FES_CAP5

GERENCIAMENTO DE RISCOS

Fontes de Riscos

- Ferramentas inadequadas
- Melhores profissionais deixam projeto
- Requisitos errados
- Projeto errado
- Equipamento esperado não chega
- Documentos ambíguos
- Cronograma estimado é inatingível
- Custo estimado está incorreto

Principais Áreas de Riscos

- Pessoal
- Cronograma e Custo
- Funcionalidade do Sistema
- Falta de entendimento da aplicação
- Análise de requisitos inadequada
- Estabilidade dos Requisitos
- Cliente tenta alterar requisitos o tempo todo
- Qualidade de Componentes Externos
- □ DIFICULDADE EM ANTECIPAR TUDO!!!

Riscos e medos

- □ Segundo Beck, alguns riscos são:
 - Adiamento da data prevista
 - Projeto cancelado: após vários adiamentos sem ao menos entrar em produção
 - □ Taxa de defeito: é tão alta que o projeto não é usado
 - Negócio mal entendido: Ocorre quando o software não resolve o problema do negócio
 - Mudança no negócio: O software é entregue, mas os problemas foram substituídos.
 - Falsa característica: O software possui muitas características interessantes de proramação, mas não são rentáveis para o cliente
 - Insatisfação da equipe: normalmente quando os bons programadores se desinteressam pelo projeto.

Riscos e medos

- □ Segundo Beck, alguns medos do cliente são:
 - Não receber o que foi solicitado
 - Solicitar uma coisa errada
 - Pagar muito por tão pouco
 - Não ver um plano, de desenvolvimento de projeto, confiável
 - Ficar preso às decisões iniciais do projeto e não poder reagir às mudanças nos negócios
 - Não saber o andamento do desenvolvimento do software
 - Não saber da verdade (sobre as dificuldades de desenvolvimento do projeto)

Riscos e medos

- Segundo Beck, alguns medos do desenvolvedor são:
 - Ser mandado a fazer mais do que ele sabe
 - Ficar desatualizado tecnicamente
 - Ser cobrado por responsabilidades sem ter recebido a autoridade necessária
 - Receber solicitações superficiais sobre o que precisa ser feito
 - Ter de solucionar problemas difíceis sem receber ajuda
 - Ter pouco tempo para conseguir os objetivos do desenvolvimento
 - Não receber

Gerenciamento de riscos

- Gerenciamento de riscos preocupa-se em identificar riscos e desenhar planos para minimizar seus efeitos em um projeto.
- Um risco é a probabilidade de que alguma circunstância adversa ocorra.
 - Riscos do projeto afetam o cronograma ou recursos
 - Riscos do produto afetam a qualidade ou desempenho do software sendo desenvolvido
 - Riscos do negócio afetam a organização que desenvolve ou compra o software
- Risco envolve mudanças, escolha e incertezas
- Assim, o risco, a morte e impostos são as poucas certezas da vida

Que riscos podem causar o fracasso de um projeto de software?

- Modificações
 - Nos requisitos do cliente, nas tecnologias, nas leis, etc
- Que método e ferramentas usar?
- Quantas pessoas devem estar envolvidas?
- Quanta ênfase na qualidade é suficiente?
- □ Eliminar riscos é um risco, devemos **minimizá-los**

Estratégias de Riscos Proativas X Reativas

- Equipes de softwares
 - Estratégias reativas a riscos
 - □ Não se faz nada...até que algo dê errado.
 - Equipe corre para a ação
 - Modo de combate ao fogo
- Estratégias mais inteligente
 - Proativa

Estratégia Proativa

- Começa muito antes do trabalho técnico iniciar
- Riscos potencias são identificados, suas probabilidades e impactos são avaliados
 - Classificados pela importância
- Estabelece-se um plano para administrar riscos
 - Plano de contingência
 - Resposta de modo controlado e efetivo

Riscos de Software

Risco	Tipo de risco	Descrição	
Rotatividade de pessoal	Projeto	O pessoal experiente deixará o projeto antes do término	
Mudança de gerenciamento	Projeto	Haverá uma mudança no gerenciamento organizacional, com a definição de prioridades diferentes	
Indisponibilidade de hardware	Projeto	O hardware essencial ao projeto não será entregue dentro do prazo	
Alteração nos requisitos	Projeto e produto	Haverá maior número de mudanças nos requisitos do que o previsto	
Atrasos na especificação	Projeto e produto	As especificações de interfaces essenciais não estavam disponíveis dentro dos prazos	
Tamanho subestimado	Projeto e produto	O tamanho do sistema foi subestimado	
Baixo desempenho de ferramentas CASE	Produto	As ferramentas CASE que apóiam o projeto não apresentam desempenho conforme o previsto	
Mudanças na tecnologia	Negócios	A tecnologia básica sobre a qual o sistema está sendo construído foi superada por nova tecnologia	
Concorrência com o produto	Negócios	Um produto concorrente foi lançado no mercado, antes que o sistema fosse concluído	

Tipos de Riscos de Software

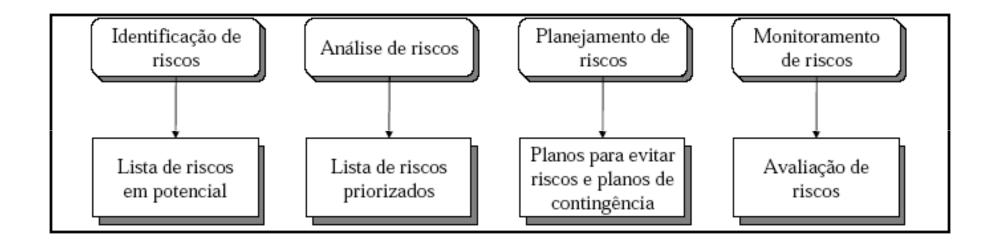
- Projeto
- □ Produto ou Técnicos
- □ Negócio

Risco de Projeto

- Se eles tornam-se reais provavelmente o cronograma se atrase e o custo aumente
- □ Complexidade, o tamanho e o grau de incerteza
- Identifica riscos de: Pessoal, orçamento, cronograma, recursos e de requisitos

Riscos de Produto ou Técnicos

- Ameaçam a qualidade e a pontualidade do software a ser produzido
- Caso ele se torne realidade pode tornar a implementação difícil ou impossível
- Identificam problemas potenciais do projeto, de implementação, de interface, de verificação e de manutenção
- Ambiguidade nas especificações, incerteza técnica, obsolescência técnica, e tecnologia de "ponta" são fatores de riscos


Riscos de Negócios

- Ameaça a viabilidade do software a ser construído
- Os principais 5 riscos de negócio:
 - Construir um sistema ou produto excelente que ninguém quer (risco de mercado)
 - Construir um produto que não se enquadra mais na estratégia geral da empresa (risco estratégico)
 - Construir um produto que a equipe de vendas não sabe como vender
 - Perda do apoio da gerencia superior por modificação da equipe (risco gerencial)
 - Perda do comprometimento orçamentário ou de pessoal (riscos de orçamentos)

O processo de gerenciamento de risco

- □ Identificação do risco
 - Identificar os riscos do projeto, do produto e do negócio
- Análise do risco
 - Avaliar a probabilidade e consequências desses riscos
- Planejamento do risco
 - Preparar planos para evitar ou minimizar os efeitos do risco
- Monitoramento do risco
 - Monitorar os riscos durante todo o projeto

O processo de gerenciamento de risco

Identificação de risco

- □ Riscos tecnológicos
- □ Riscos de pessoal
- □ Riscos organizacionais
- Riscos de ferramentas
- □ Riscos de requisitos
- □ Riscos de estimativa

Riscos e tipos de risco

Tipos de riscos	Riscos possíveis
Tecnologia	 O banco de dados utilizado no sistema não pode processar tantas transações por segundo, como esperado. Componentes do software que deviam ser reutilizados contêm defeitos que limitam sua funcionalidade.
Pessoal	 É impossível recrutar pessoal com a habilidade requerida. Pessoas importantes estão doentes e não disponíveis em períodos cruciais. O treinamento necessário para o pessoal não está disponível.
Organizacional	 A organização está estruturada de maneira que diferentes gerências são responsáveis pelo projeto. Problemas financeiros organizacionais forçam reduções no orçamento do projeto.
Ferramentas	 O código gerado pelas ferramentas CASE é ineficiente. As ferramentas CASE não podem ser integradas.
Requisitos	 São propostas mudanças nos requisitos, que exigem significativo retrabalho. Os clientes não comprændem o impacto das mudanças nos requisitos.
Estimativa	 O tempo requerido para desenvolver o software é subestimado. A taxa de solução de defeitos é subestimada. O tamanho do software é subestimado.

Identificação de riscos - Checklist

- □ Tamanho do produto
- Impacto no negócio
- Características do cliente
- Definição do processo
- Ambiente de desenvolvimento
- Tecnologia para a construção
- □ Tamanho e experiência da equipe

Exemplo de Checklist

- Os riscos estão plenamente entendidos pela equipe de ES e por seus clientes?
- Os clientes envolveram totalmente na definição dos requisitos?
- Os usuários finais tem expectativas realísticas?
- □ O escopo do projeto é estável?
- A equipe é suficiente para atender o projeto?

Análise de riscos

- Avaliação de probabilidade e seriedade de cada risco
- Probabilidade pode ser muito baixa, baixa, moderada, alta ou muito alta
- Os efeitos do risco podem ser catastrófico, sério, tolerável ou insignificante

Análise de risco (Exemplo 1)

Risco	Chances	Efeitos
Problemas financeiros organizacionais forçam reduções no orçamento do projeto		Catastróficos
É impossível recrutar pessoal com as habilidades requeridas para o projeto		Catastróficos
Pessoas-chave estão doentes em períodos cruciais do projeto		Sérios
Componentes que deviam ser reutilizados têm defeitos que limitam sua funcionalidade		Sérios
São propostas mudanças nos requisitos que exigem significativo retrabalho	Moderada	Sérios
A organização é estruturada de forma que diferentes gerências respondem pelo projeto	Alta	Sérios
O BD utilizado não pode processar tantas transações por segundo, como esperado	Moderada	Sérios
O tempo requerido para desenvolver o software é subestimado		Sérios
As ferramentas CASE não podem ser integradas		Toleráveis
Os clientes não compreendem o impacto das mudanças nos requisitos		Toleráveis
O treinamento necessário para o pessoal não está disponível		Toleráveis
A taxa de solução de defeitos é subestimada		Toleráveis
O tamanho do software é subestimado		Toleráveis
O código gerado pelas ferramentas CASE é ineficiente	Moderada	Insignificantes

OBS.:

Pode usar Chances ou Probabilidade de acontecer em %

Pode usar Efeitos ou Probabilidade do impacto em % (levar em conta, natureza, escopo e época)

Análise de Risco (Exemplo 2)

RISCO (r _i)		PROBABILIDADE (I _i) / IMPACTO DE RISCO (x _i)		
r _i	Descrição	I_i/x_i	Valor	Descrição
R1	Erros na formulação e entendimento do escopo do projeto	L1	75%	Risco altamente provável.
		X1	40%	Médio impacto.
R2	Pessoal inexperiente	L2	65%	Risco provável.
		X2	40%	Médio impacto.
R3	Limitação de aquisição de software e hardware	L3	75%	Risco altamente provável.
		X3	80%	Muito alto impacto

Planejamento do risco

- Considerar cada risco e desenvolver uma estratégia para gerenciar tal risco
- □ Estratégias para evitar o risco
 - A probabilidade de aumento do risco será reduzida
- □ Estratégias de minimização
 - O impacto do risco no projeto ou produto será reduzido
- □ Planos de contingência
 - Se o risco surgir, planos de contingência são planos para lidar com tal risco

Estratégias de Gerenciamento de riscos

Risco	Estratégia
Problemas financeiros organizacionais	Prepare um documento informativo para a alta gerência, mostrando como o projeto presta uma contribuição muito importante para os objetivos da empresa.
Problemas de recrutamento	Alerte o cliente sobre as dificuldades em potencial e a possibilidade de atrasos; investigue a compra de componentes.
Doença de pessoas da equipe	Reorganize a equipe de maneira que haja mais sobreposição de trabalho e, portanto, as pessoas compreendam as tarefas uma das outras.
Componentes defeituosos	Substitua componentes potencialmente defeituosos por componentes comprados e que tenham confiabilidade reconhecida.
Alterações nos requisitos	Extraia informações que podem ser rastreadas, para avaliar o impacto das mudanças nos requisitos, maximize a inclusão de informações no projeto
Reestruturação organizacional	Prepare um documento informativo para a alta gerência, mostrando como o projeto presta uma contribuição muito importante para os objetivos da empresa.
Desempenho do BD	Investigue a possibilidade de comprar um banco de dados com maior desempenho.
Prazo de desenvolvimento subestimado	Investigue a compra de componentes e verifique o uso de um gerador de programas.

Monitoramento do risco

- Cada averiguação identificou riscos regularmente para decidir se está ou não se tornando menos ou mais provável
- □ Também averigua se os efeitos do risco mudaram
- Cada risco-chave deve ser discutido nos encontros de progresso de gerenciamento

Planilha final para Análise de Risco

- Identificação do risco (número)
- □ Risco
- Descrição
- Tipo de Risco (Projeto, Produto, Negócios)
- Fator de risco (Pessoal, Organizacional, Tecnologia, Ferramentas, Requisitos, Estimativa)
- Probabilidade de acontecer (Chances)
- Impacto (Efeitos)
- Consequências e Estratégias de eliminação ou minimização (RMMM – Risk Mitigation, Monitoring, Management)
- □ Valor (R\$ ou U\$S)

Pontos-chave

- Um bom gerenciamento do projeto é essencial para o sucesso do projeto
- A natureza intangível do software causa problemas para o gerenciamento
- Gerentes têm diversos papéis, mas suas atividades mais significativas são o planejamento, estimativa e cronograma
- Planejamento e estimativa são processos interativos que continuam durante todo o curso de um projeto

Pontos-chave

- Um milestone é um estado previsível onde algum relatório formal de progresso é apresentado ao gerenciamento.
- Riscos podem ser de projeto, do produto ou do negócio
- Gerenciamento de riscos preocupa-se em identificar riscos que possam afetar o projeto e planejamento para certificar que tais riscos não se transformem em ameaças maiores